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(Received 6 December 1999) 

A new division scheme for the pair potential into long-range and short-range parts is 
presented, which takes account of the dependence on the density and makes possible 
the extraction of the bridge function B(r) in the core region. The calculation of the 
correlation functions is camed out with the hybridized mean spherical approximation 
(HMSA). As attested by the comparison with the simulation results, HMSA used with 
this potential separation is suitable to produce accurate bridge function and pair cor- 
relation function for the Lennard- Jones fiuid. 

Keyworh: Bridge function; Thermodynamic consistency 

I. INTRODUCTION 

There are many semianalytic methods in the study of the fluid struc- 
ture for obtaining the molecular distribution functions. One of the 
most accurate is that of the self-consistent integral equations, which 
allows to calculate the pair correlation function, g(r), and the indirect 
correlation function, y(r ) ,  by ensuring the equality between the virial 
and compressibility equations of state. In addition, every semianalytic 
method can be compared and tested against the methods of computer 
simulation, sometimes referred as exact and whose results serve as 
references, providing valuable information on the liquid state theory. 

~~ ~ 
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56 J. M. BOMONT AND J. L. BRETONNET 

Keeping in mind that g(r) resulting from the integral equation 
theories is approximative, a thermodynamically structural solution 
for any pair potential u(r) should be written under the appropriate 
and exact form 

Actually, Eq. (1) defines the bridge function B(r) that is required by 
the theory to provide the exact pair correlation function. From a 
theoretical point of view, B(r) can be expanded in terms of diagrams as 

m 

n=4 

where {en(r)} represents a set of n points elementary diagrams [l]. 
However, only few low density clusters are known so that the 
expansion of B(r) is not applicable in terms of clusters to the treat- 
ment of dense matter. Therefore, as attested in the literature, inten- 
sive studies of the possibilities to extract B(r) from other different 
approaches have been carried out during the last fifteen years. 

In studying the properties of B(r) for various pair potentials, 
Rosenfeld and Ashcroft [2] arrived at the conclusion that the most 
important region in which the bridge function must be specified, in 
any theory, is the region of the first peak of g(r). In their work, it has 
also been shown that the short-range part of B(r) has a universal fea- 
ture whose the form looks like the bridge function of the hard-sphere 
(HS) potential, whatever the pair potential under study. For that 
reason, the simulations performed in order to search for a detailed 
knowledge of B(r) are mainly related to properties of the HS refer- 
ence fluid. In contrast, Duh and Haymet [3] pointed out more re- 
cently that the bridge function is no longer recognized as universal. 

Although the computer simulation yields a pair correlation function 
without any approximation to the many-body problem, the infor- 
mation is limited only within the half of the side length of the unit 
cell. This causes a difficulty in calculating the bridge function from 
simulation due to unavoidable truncation errors. Furthermore, the 
extraction of B(r) from simulated pair correlation function requires 
complex algorithms, as well as the use of approximations at medium 
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LIQUID STRUCTURE: POTENTIAL SEPARATION 51 

and long distances. This difficulty has been, however, partly overcome 
by Llano-Restrepo and Chapman [4], who have calculated the 
direct correlation function, c(r), and the cavity function, y(r)  = 

g(r)exp[pu(r)], for the Lennard- Jones (LJ) pair potential by Monte 
Carlo simulation. 

In this work the goal is to obtain consistently the bridge function in 
the core region in good agreement with MC calculations. Instead of 
providing a new integral equation, we want to show that it is possible 
to improve the results of the correlation functions, as well as the 
bridge function, when the separation of the pair potential u(r) is opti- 
mized. The essence of the method is to recognize that the difference 
between the respective Mayer functions of the short-range and the 
long-range parts of the potential becomes quite smooth around the 
principal peak of g(r). We substantiate this in the next sections by 
carrying out numerical tests for the Lennard- Jones pair potential. 

11. INTEGRAL EQUATION THEORY 
AND POTENTIAL SEPARATION 

In the framework of the integral equation (IE) method, a particular 
efficient class of closures is due to Rogers and Young [5], which 
involves a mixing function chosen to ensure the thermodynamic con- 
sistency between the virial and compressibility equations of state. 
Their integral equation is an interpolation between the hyper-netted 
chain (HNC) and Percus -Yevik (PY) approximations. To improve 
this method, Zerah and Hansen [6] used a closure, called hybridized- 
mean-spherical approximation (HMSA), that interpolates between 
the HNC and soft-core mean spherical approximation (SMSA) via a 
continuous mixing function. The latter IE presents several advan- 
tages. Firstly, it is adapted to the treatment of the attractive poten- 
tial tail. Secondly, it provides self-consistent results between those 
of HNC, which corresponds to B(r) = 0, and those of SMSA that 
overestimates the bridge function of simulation over a wide range of 
distances. 

Previous studies [7-91 have shown that the HMSA integral equa- 
tion provides a good description of a great many properties of liquids 
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58 I. M. BOMONT AND J. L. BRETONNET 

in using effective pair potentials as interatomic potentials. In these 
works, the potential u(r) is split at the position of its minimum r,,, - 
according to the prescription of Weeks el ul. [lo], giving a short-range 
part, usR(r), and a long-range part, d R ( r ) .  With this general 
separation, the HMSA integral equation reads 

and has to be solved simultaneously with the Ornstein-Zernike 
equation 

The function flr) is the mixing function intended to obtain the 
thermodynamic consistency. Once 7(r) andflr) are known, one can 
then generate the bridge function B(r) owing to the relationship 

As we can see, the bridge function is zero when f(r) equals unity, 
reducing the integral equation to that of the HNC closure, whereas it 
corresponds to the SMSA whenflr) comes near zero. These integral 
equations are very tractable, but in special circumstances - high den- 
sities and low temperatures - they lead to a severe inconsistency be- 
tween the virial and compressibility equations of state, i.e., p k B T X T f  
S(O), where S(0) is the long-wavelength limit of the structure 
factor. Furthermore, it is noticeable that B(r) depends explicitly on the 
long-range part uLR(r) of the pair potential. Surprisingly, in using the 
WCA division scheme of potential, HMSA provides bridge function 
and cavity function in the core region (especially at zero separation) 
not in good agreement with MC calculations over a wide range of 
densities and temperatures [l I]. This feature points out that consistent 
thermodynamic properties do not imply necessary the exactness of 
the correlation functions g(r), y(r) and y(r). Generally, the main 
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LIQUID STRUCTURE: POTENTIAL SEPARATION 59 

disagreements between the results of various theories, and their mutu- 
al disagreement with MC results, are a consequence of the respective 
assumptions made on B(r) in this region. 

Since our investigation focus on the bridge function, we want to 
show that it is possible to obtain consistently B(r) in good agreement 
with MC calculations, without new integral equation, if the separation 
of the pair potential u(r) is optimized. This new division scheme is 
developed in the mind that it has to be state-dependent following the 
idea emphasized by Kang and Ree [12], Du and Haymet [I31 and 
Lee et al. [14]. For our purpose, we consider the HMSA with the LJ 
pair potential that reads 

where u is the size of the potential core and E the depth of the 
attractive part located at rm. From Eq. ( 5 )  we see that B(r) is very 
sensitive to the long-range part of the potential, therefore we as- 
sume that an optimization of it could be the key in obtaining a good 
agreement for B(r) in the core region. Optimization means, according 
to us, the determination of state-dependent short-range part, usR*(r), 
and long-range part, uLR*(r), in order to ensure the equality u(r) = 

uSR*(r)+zfR*(r). To achieve this, we propose a partition the LJ 
potential as follows (Fig. 1) 

with uSR*(r) = u(r)-uLR*(r). The range of distances is divided into 
three parts delimited by rl and r2. Also, the present separation of 
the pair potential reduces to the WCA scheme when p = 1 and rl = 
rz = r,. Then, the coefficients ul, uz, u3 and u4 of the polynomial 
function are determined in order to keep safe the continuity and 
the first derivative of the potential at the positions r = rl and r = r2 

as well. The analytical solution of the set of equations provides 
the values of the ai parameters versus r l ,  rz, p ~ ,  u(r2) and u'(r2) as 
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FIGURE 1 Long-range part &R*(r) of the LJ potential, at T’ = 1.5 for two densities. 
The thick line corresponds to the WCA acheme. 

follows 

4 2 4 2 )  - r24u’(r2) - 3r2<u(r2) +<+’(r2) +3p&r14 -p&r; 
(rl -r2i3 
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r1(-4u’(r2) -r1r2u’(r2) + 6 p ~ 2  - 6u(r2) +2&’(r2)) 
3 a2=- 

a3 

1 

- -24u’(r2) + 3peQ - 3rlu(rz) + rzrlu’(r2) + 3pet-2 - 3r2u(rz) + 4u‘(r2) 
0.1 - r2) 

-r1 u’(r2) - 2u(r2) + rzu’(r2) +2pe 

3 - I 

ad=- 
(rl -r213 

(8) 

Specifically, the model is relied on three parameters rl, r2 and p .  The 
region between rl and 1-2 is that of the main peak of g(r), the crucial 
region in which B(r) has to be specified according to Rosenfeld and 
Ashcroft [2]. The parameter rl corresponds to the distance at which 
g(r) becomes non zero, and r2 to the first minimum of g(r), roughly 
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LIQUID STRUCTURE: POTENTIAL SEPARATION 61 

estimated by 12 = r ,  + 2(rm - rl). Strictly, for the LJ potential, these 
values are rl = 0 . 8 8 ~  and r2 = 1.6a, whatever the temperature and the 
density [15]. Thus, the state dependence separation of the potential 
takes place via the parameter p, which is responsible for the depth of 
the long-range part tfR'(r) of the potential. At this stage of our study, 
we require that the zero separation value of the bridge function, 
E(O), calculated with HMSA coincides with that of MC [4], in order 
to choose the value of p. 

III. RESULTS OF CALCULATIONS 

So, in our procedure of calculation, p is considered as a simple 
adjustable parameter. Besides, for the iterative process implemented 
in the HMSA, it is sufficient to adopt f ( r )  as a constant fo E [O; 13 
over the entire r-range, as proposed by Bretonnet and Jakse [16]. 
Practically, the algorithm starts with an initial value of p(  = 1) and 
with the HMSA, which guarantees the thermodynamic consistency 
and provides a first result for the parameter fo and the correlation 
functions g(r) and E(r). In the next iteration cycle, the previous value 
of p is replaced by the new one and at the end of that iteration cycle, 
a new set of quantitiesfo, g(r) and B(r) is produced. The four quan- 
tities p, fo, g(r)  and B(r) vary at each step of the procedure, which is 
repeated until obtaining equality between the calculated bridge func- 
tion at zero separation and the MC one. 
This process is very poorly time consuming, because the number of 

iterations that ensures the thermodynamic self-consistency is very low. 
Our calculations have been performed with the classical method of 
Gillan [17], improved by Labik et al. [18], but no mention will be made 
here on the efficiency of the method, which combines the traditional 
scheme and the Newton - Raphson technique for solving nonlinear 
integral equations. It is sufficient to bear in mind that the fast Fourier 
algorithm is used and a reasonable compromise between computing 
time and numerical precision is obtained with the step size of 0.02 
and a grid of 1024 points. 

As an example, we treat the typical LJ potential revisited by the 
optimization of the potential separation that is proposed in Eq. (7). 
All units are expressed in terms of the LJ parameters, i.e., reduced 
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62 J. M. BOMONT AND J. L. BRETONNET 

temperature T* = kgT/E and reduced density p* = pd. The thermo- 
dynamic states correspond to conditions where simulation data are 
available, namely T' = 1 S, p* = 0.4,0.6,0.7,0.8 and 0.9. Calculations 
are carried out using the state-dependent division scheme (SDDS) 
as well as the classical WCA separation for the sake of comparison. 
As expected, the thermodynamic consistency is reached for all states 
under study. 

As it can be seen from Table I, when the density is increasing, the 
mixing parameter fo is decreasing in all the cases studied: fo ob- 
tained with SDDS is slightly higher than that obtained with WCA 
separation, but at high densities (0.7 to 0.9), it varies monotonously 
for SDDS and remains constant (- 0.2) for the WCA separation. 

More interesting is the fact that the parameter p is found to 
increase with density and to be more than 1 for each thermodynamic 
state under study. At high density (0.6-0.9), the depth of the long- 
range part of the potential, 8 R * ( r ) ,  is almost twice the value E. This 
feature points out, a posteriori, that a state dependence has to be in- 
cluded in the division scheme of the effective pair potential. It has 
been shown in a previous work [ll], that HMSA used with WCA 
separation led to overestimated values of B(0). In the present calcu- 
lation, we anticipate that B(0) can be reduced only if the parameter p 
is greater than unity. This proves clearly that the bridge function at 
zero separation is extremely sensitive to the imposed depth of the 
long-range part d R * ( r )  involved in the SDDS. 

In order to have an accurate indication of the variation in the 
bridge function with density, the exact relations [19] between the indi- 
rect correlation function, the cavity function and the bridge function, 
at zero separation, are useful, namely 

TABLE I Mixing parameterfo and parameter p for WCA 
and SDDS division schemes at T* = 1.5, for five densities 

T* = 1.5 /b P 
P* SDDS WCA SDDS WCA 

0.4 0.750 0.615 1.500 1.OOO 
0.6 0.535 0.265 1.850 1.000 
0.7 0.455 0.205 1.905 1.000 
0.8 0.400 0.200 1.930 1.000 
0.9 0.370 0.200 1.950 1.000 
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LIQUID STRUCTURE: POTENTIAL SEPARATION 63 

where lny(0) corresponds to the excess chemical potential - equal to 
pp in the case of HS fluid-, and 

The integral never exceeds 3% of y(0) and, for the HS fluid, the 
determination of B(0) leads to 

15$ - 2q3 + 3q4 
(1 - 7d4 

B(0)  M - 7 

where q = (7r/6)pD3 is the packing fraction of the HS fluid of D 
diameter. The second set of exact relations is for the derivative with 
respect to r,  which reads for the HS fluid, 

Then, -B(r) is expected (i) to be a non negative oscillating function 
under contact (r = a), (ii) to present a damped decay just before 
reaching the zero value and (iii) to approach r = 0 with a near zero 
slope contrary to what happens for the HS fluid. 

As we are interested in the consequences of the SDDS on the bridge 
function over the entire range of the core region, we compare in 
Figure 2 our results of B(r) with those of the simulation. The bench- 
mark to be used to test the SDDS is the MC simulation performed 
by Llano-Restrepo and Chapman [4] that, to our knowledge, is the 
only complete study of the bridge function for the LJ fluid by simu- 
lation. Showing the bridge functions in the core for all five thermo- 
dynamic states, we observe that the curves follow the MC simulation 
one extremely well from zero separation to contact. Incidentally, we 
also have compared our results to the well-known parameterized 
function of Groot et al. [20] for the HS fluid, after the rule to 
match the HS diameter is adopted [ll]. The results are not reported 
on the figure for clarity, but the agreement is very good except 
for B(0) since the HS bridge function approaches r = 0 almost 
linearly. In addition, when we compare the bridge functions calculated 
using the SDDS and the WCA division scheme, it appears that the 
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0:o 0:z 0:6 0.8 0 

FIGURE 2 Bridge function B(r) at T' = 1.5, for five. densities, calculated with the 
HMSA integral equation by using the WCA division scheme (dot line) and SDDS (solid 
line), compared to Monte-Carlo (open circles). 

difference starts to be distinguishable beyond the density p* = 0.4. The 
relative difference is 2% at p* = 0.4, but reaches 19% at p* = 0.9, 
indicating that the SDDS is less influent at low densities. 

IV. CONCLUSION 

In this work, a new division scheme of the potential is proposed for 
simple fluids that makes it possible to extract consistently the bridge 
function in the core region. In this scheme, the depth of the attractive 
part of the potential is fixed via a suitable parameter adjusted on MC 
values of the bridge functions at zero separation. Numerical tests 
have been carried out for a pure LJ fluid in several states along the 
isotherm T* = 1.5. The bridge function has been successfully com- 
pared with those of the useful MC simulation. The main feature 
pointed out in this paper is that the bridge function has been shown 
to be extremely sensitive to the imposed depth of the attractive po- 
tential involved in the division scheme. This justifies, a posteriori, 
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LIQUID STRUCTURE: POTENTIAL SEPARATION 65 

that a state dependence has to be included in the potential separation. 
In a near future, we intend to mix the thermodynamic consistency con- 
dition with that division scheme of the potential in order to eliminate 
the dependence of the parameter p. 
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